


and protection. Grâce à l'acharnement constant et au soin pour les details, toute la production SICOAIR est soumise è des essais et des contrôles de qualité afin de garantir toujours protection

alla cura per i dettagli tutta

et sûreté permanente.

Graças ao constante compromisso e cuidado pelos detalhes, toda a produção SICOAIR é objecto de ensaios e provas de qualidade de forma a garantir a segurança e protecção constantes.

Gracias al constante compromiso y al cuidado que se otorga a los detalles la produción SICOAIR es objeto de ensayos y pruebas de calidad para garantizar una seguridad y una protección constantes.

La lingua di riferimento per questo manuale è l'italiano. / Italian is the reference language of this manual. L'Italien est la langue de référence de ce manuel. / Italien ist die Bezugssprache dieser Bedienungsanleitung. Italiano es la lengua de referencia de esto manual.

O SISTEMA

- Fácil e rápido de instalar
- Poucas percas de carga
- Ausência de corrosão
- Reutilizável
- Resistente ao fogo
- Resistente aos raios UV
- Boa resistência ao choque
- Ausência de soldadura na montagem

2. CONDIÇÕES DE FUNCIONAMENTO

Temperatura admissivel: - 20 °C / + 70 °C Pressão nominal de funcionamento: PN 12,5

Temperatura máxima [°C]	Pressão máxima de exercício [bar]		
30	12,5		
50	9		
70	5		

Fluido: ar comprimido.

3. CARACTERÍSTICAS TÉCNICAS

As características técnicas são garantidas exclusivamente com componentes SICOAIR. A pintura electrostáctica dos tubos, RAL 5015, é conforme o Dec. Lei 81/08 Título V. Os tubos são marcados, como requerido no nosso procedimento de controlo de qualidade e de garantia do produto, para assegurar a sua indentificação.

4. CONSELHOS DE SEGURANÇA

Nota: Ler atentamente o presente Manual que apresenta importantes indicações e advertências sobre segurança, uso e manutenção do sistema e conservá-lo convenientemente para futuras consultas.

Após ter retirado da embalagem os componentes, assegurar-se da sua integridade; em caso de dúvida não aplicar e comunicar à SICOMAT srl.

Não deixar os produtos da embalagem ao alcance de crianças ou deficientes pois são potenciais fontes de perigo.

É indispensável cumprir as instruções mencionadas no presente Manual.

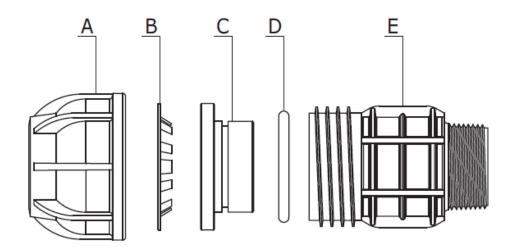
Qualquer instalação realizada de forma não conforme com os requisitos especificados no presente manual pode comprometer a vossa segurança.

Os tubos e acessórios de ligação não devem ser instalados em contacto com fontes de vibração e de choques térmicos que podem levar ao desrespeito dos limites impostos no parágrafo 2.

A SICOMAT srl não pode ser considerada responsável por eventuais danos em pessoas, animais ou outros causados por instalação inadequada, uso impróprio, errado ou ilógico.

5. CONDIÇÕES DE ARMAZENAGEM

Os componentes devem ser armazenados em ambiente fechado, limpo e à sombra, não expostos ao calor ou directamente ao sol.


6. CONSELHOS PARA A INSTALAÇÃO

Verificar a compatibilidade do fluido a transportar (se diferente de ar comprimido) com Nylon 6, NBR e Alumínio, fazendo referência à "Tabela de compatibilidade" a pedir à Sicomat.

Considerar a dilatação térmica adoptando as soluções técnicas mais idóneas à instalação a realizar (Ver NORMAS TÉCNICAS DE INSTALAÇÃO, a partir da página 52).

7. DESCRIÇÃO DOS COMPONENTES

- Acessório composto por:
- A Porca de aperto em Nylon 6 Azul
- B Grifa de blocagem em aço inox AISI 301
- C Distancial em Nylon 6 Preto
- D Vedante tipo OR NBR
- E Corpo em Nylon 6 Preto

NOTA: Antes da introdução do tubo, verificar a correcta posição e orientação dos componentes. Ver desenho acima.

• Tubo em Alumínio primário EN AW-6060 T6 (Al Mg Si 0,5)

Composição química

Liga	Cu	Fe	Mn	Mg	Si	Zn	Cr	Ti	Al
6060	0,1	0,1-0,3	0,1	0,35-0,6	0,3-0,6	0,15	0,05	0,1	Resto

Peso específico 2,70 Kg/dm3

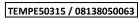
Características mecânicas mínimas

Liga	Carga de ruptura	Limite elástico		Alongamento A %	Dureza HB	
6060	Rm215 N/mm	2Rp0,2160 N/mm2		8	75	
Módulo de elasticidade - 69000 N/mm2			Cromatação interna e externa			
Resistência eléctrica - 0,033 Ωmm2/m			Extrusão calibrada			
Condutibilidade térmica - 210 W/mK			Tolerância admitida sobre o diâmetro: de +0,1 a −0,3			
Temperatura de fusão - 615-655 °C			Coeficiente de dilatação térmica: K = 0.000023			

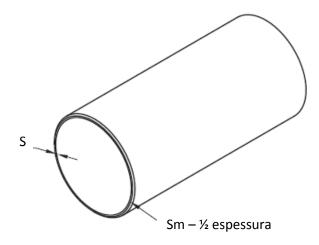
8. INSTRUCÇÕES DE MONTAGEM

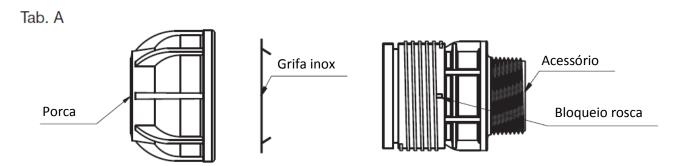
8.1 Preparação do tubo

Dispor de um corta-tubos (Cód. CT1240 - CT1263 / 08137020032 - 081137020063, conforme o diâmetro do tubo), posicionar a ferramenta perpendicularmente ao tubo a cortar e proceder ao corte.

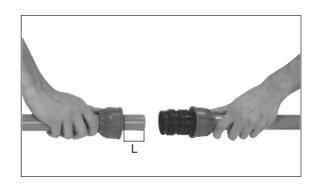

Dispor de um chanfrador (Cód. CONE050 / 08138020040 - 08138020050 para tubos até Ø 40, Cod. TEMPE50315 / 08138050063 para tubos superiores Ø 40) e de um chanfrador interno (Cod. R230.000.007 / 08138000000) e proceder segundo as instruções fornecidas na documentação anexa à ferramenta.

CONE050 / 08138020050



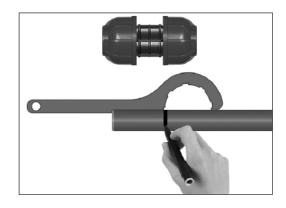

A operação de chanfrar, indispensável para não danificar o vedante (o'ring) do acessório, deve respeitar as condições descritas no desenho seguinte:

Executar o chanfre como indicado na figura ao lado.

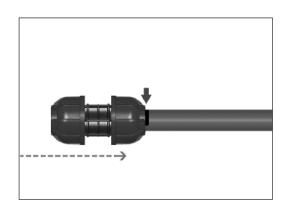


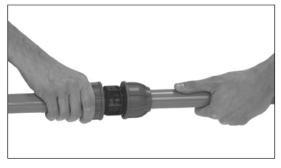
8.2 Montagem do tubo - acessório

Verificar que todas as partes do acessório se encontram correctamente alojadas. Verificar atentamente a orientação da grifa de inox, se estiver montada ao contrário a segurança da montagem não se encontra garantida. (Ver Tabela A).

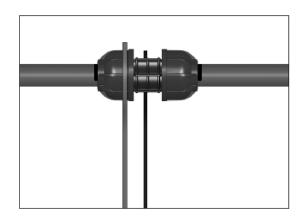


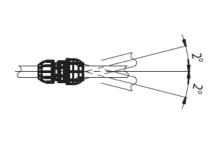
Antes de inserir o tubo no acessório enroscar a porca, em PA6 azul, até ao bloqueio da rosca, não o ultrapassando. O tubo deve ser inserido no acessório até ao batente, ultrapassando o vedante. Para ter a certeza desta operação pode sempre fazer uma marcação sobre o tubo a partir da sua extremidade com a medida "L" .(Ver Tabela B).

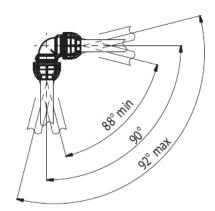



Tab. B

DN	20	25	32	40	50	63
F [Nm]	9÷11	11÷13	12÷15	15÷17	17÷20	18÷22
L [mm]	45	55	60	70	85	95


Quando o tubo está correctamente inserido no acessório, enroscar a fundo a porca ultrapassando o dispositivo anti-desaperto. Para facilitar esta operação aconselha-se a utilizar as ferramentas indicadas no nosso catálogo (Cód. R235.XXX.XXX - R236.XXX.XXX / 08133xxxxxx – 08134xxxxxx).


Na tabela B está indicada, por cada medida do acessório, a força (exprimida em Nm) necessária para apertar a porca e garantir uma perfeita ligação seja pneumática, seja mecânica.


Para garantir uma correcta instalação e não comprometer a estanquidade pneumática dos acessórios, não são admitidos desalinhamentos superiores a 2° em relação ao eixo original. (Ver Tabela C).

Tab. C

8.3 Ancoragem da instalação

Os entre-centros da ancoragem não devem ultrapassar 4 metros.

A distância mínima da abraçadeira ao acessório deve ser de 100/150 mm para permitir o deslizar do tubo provocado pela dilatação térmica.

Quando a instalação supera os 50 metros, devem colocar-se adequados meios de compensação da dilatação (coeficiente de dilatação do alumínio K = 0,000023).

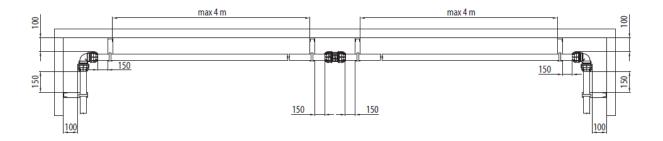
Na projectação da instalação devem considerar-se os espaços mínimos indispensáveis de forma a garantir a correcta dilatação do tubo.

A ancoragem da instalação com Ø igual ou superior a 40 mm deve executar-se com abraçadeiras adequadas de forma a garantir o deslizar do tubo e também a sua segurança em caso de erros na montagem.

Como calcular a dilatação de uma instalação:

If = comprimento final (compreende a dilatação) da instalação à temperatura ambiente máxima.

li = comprimento da instalação à temperatura ambiente de referência (ex. 15°C).


If = Ii x (K x Δ t + 1)

Ex.: **li** 100 metros, Δt 30°, diferença entre 10° de temp. ambiente mínima e 40° temp. ambiente máxima, logo:

If = $100 \times (0,000023 \times 30 + 1) = 100,069$ metros.

A dilatação para Δt 30° s/ 100 m resulta em 69 mm.

É indispensável que a instalação não encontre obstáculos que possam impossibilitar ou tornar difícil a dilatação, tal facto poderia provocar danos aos acessórios.


9. MANUTENÇÃO

Importante: Qualquer intervenção sobre o sistema, só pode ser executada com ausência de pressão. Verificar anualmente o estado do equipamento.

10. RISCOS RESIDUAIS

Evento	Causa possível		
	Desalinhamento superior aos 2° admitidos		
Ruptura	Golpe de impacto		
	Armazenagem inadequada dos acessórios		
	Aperto defeituoso		
Desaperto	Incompatibilidade dimensional tubo-acessório (ver tab. "Dimensões e Tolerâncias")		
	Pressão de serviço > PN		
Explosão	Presença de vestígios de substância combustível no		
Explosad	fluido, inflamada por deflagrações externas		
	Aperto inadequado		
Danos por choque a pessoas ou coisas	Incompatibilidade dimensional tubo-acessório (ver tab. "Dimensões e Tolerâncias")		
	Pressão de serviço > PN		
	Presença de vestígios de substância combustível no		
Contaminação química	fluido, inflamada por deflagrações externas ao		
	sistema com uma Pressão de serviço > PN		

11. COMO CALCULAR UMA REDE DE DISTRIBUIÇÃO DE AR COMPRIMIDO

11.1 Caudal admitido na instalação

A qualidade da superfície interna dos tubos e dos acessórios, permite garantir caudais superiores, em secções equivalentes, em relação aos tubos em ferro. Para cálculos relativos aos caudais suportados pelos acessórios SICOAIR em função das pressões e dos vários diâmetros disponíveis, recomenda-se a utilização do nomograma anterior e às respectivas instruções de utilização a seguir descritas.

O nomograma pode ser utilizado de formas diversas, conforme os dados de partida e os dados de procura:

a) Calcular o débito a partir do diâmetro exterior do tubo, da pressão e da perca de carga admíssivel. Proceder da seguinte forma: traçar uma linha direita que liga o valor da perca de carga (eixo A) ao valor da pressão (eixo C). Esta linha permite determinar um ponto X sobre o eixo de referência R. Traçar, então, uma linha direita partindo do ponto que corta o eixo B correspondente ao diâmetro do exterior do tubo. A intersecção entre o prolongamento desta linha e o eixo A indica o valor do caudal.

- b) Calcular o diâmetro exterior do tubo partindo do valor da pressão, do caudal e da perca de carga admíssivel. Proceder da seguinte forma: traçar uma linha direita que liga o valor da pressão (eixo C) ao valor da perca de carga (eixo A). Esta linha permite identificar um ponto X sobre o eixo R. Traçar uma linha direita que liga o valor X ao valor do caudal pretendido (eixo A); a intersecção desta linha com o eixo B indica o diâmetro exterior do tubo que se deve utilizar.
- c) Calcular a perca de carga partindo do diâmetro exterior do tubo, da pressão e do caudal. Proceder da seguinte forma: traçar uma linha partindo do valor do caudal (eixo A) até ao valor do diâmetro exterior do tubo (eixo B). Esta linha corta o eixo R num ponto X. Traçar, então, uma linha direita partindo do ponto X até ao valor da pressão (eixo C). A intersecção entre o prolongamento desta linha e o eixo A indica o valor da perca de carga do tubo.

NOTA: O caudal no nomograma é expresso em ANR (= Atmosfera Normal de Referência) definida como: caudal real à pressão efectiva (P) x pressão absoluta (P+1) [bar].

O nomograma refere-se a uma temperatura do fluido de 15°C. Para valores diferentes de temperatura deve inserir-se um factor correctivo da temperatura. Por exemplo, para se calcular um caudal a 0°C:

Caudal a 0°C = caudal a 15°C x
$$\frac{0^{\circ}C + 273}{288}$$

11.2 Perca de carga dos acessórios

O acessório, por se liso internamente e ter o mesmo diâmetro interno do tubo, cria mesmo assim, um impedimento ao fluxo do ar principalmente quando provoca uma mudança de direcção, como no caso dos joelhos, T ou reduções. Na tabela E estão descritos os dados das percas de carga causadas pelos acessórios. Cada acessório ou mudança de direcção corresponde a X metros de tubo como especificado na tabela E.

Tab. E. Comprimento equivalente de tubo de igual diâmetro [m]

Diâmetro externo do tubo	União direita	Joelho 90°	T em linha	T em derivação	Redução
20	0.15	0.40	0.20	0.60	0.20
25	0.20	0.50	0.30	0.80	0.25
32	0.25	0.60	0.40	1.10	0.35
40	0.30	0.80	0.50	1.40	0.45
50	0.40	0.95	0.70	1.70	0.60
63	0.50	1.25	0.95	2.30	0.75

11.3 Dimensionamento da rede

Possuindo os dados do consumo de ar comprimido em l/min., e estabelecida a perca de carga aceitável, deve consultar-se a Tabela D para estabelecer a dimensão dos tubos. Examinada a instalação e consideradas as mudanças de direcção, os Tês e as reduções, completam-se e corrigem-se, com os dados da Tabela E, as informações anteriormente encontradas.

12. NORMAS DE REFERÊNCIA

- Directiva 2006/42/CE "Directiva máquinas";
- Dec.Lei 81/08 "Norma em matéria de tutela da saúde e da segurança nos locais de trabalho;
- Título V Sinaléctica de saúde e segurança no trabalho;
- Anexo IV ponto 3.6 disposições gerais de segurança para tubagens e canalizações;
- D.M 04.12.2000 Aprovação e publicação da Tabela UNI CIG de cuja a Lei 06.12.1971 n. 1083 refere a
 Norma para a segurança da utilização de gás combustível Anexo 7 "Norma UNI 9860";
- UNI EN 1050 "Segurança de maquinaria príncipios para a avaliação do risco" (11/1996);
- UNI 5634 "Sistemas de identificação das tubagens e canalizações condutoras de fluidos" (1997);
- D.M n°37/08 de 22.01.08 Art. 1.1 o presente decreto aplica-se às instalações colocadas ao serviço em edifícios, indipendentemente do destino da utilização, colocadas internamente nos mesmos com relativa importância. [...]Art. 1.2 § e) Instalações para a distribuição de gás de qualquer tipo, incluídas obras de evacuação, ventilação e arejamento de locais.Art. 4 Requisitos técnico-profissionais.Art. 5 Projectação das instalações.
- Lei 46/90

13. GARANTIA

A garantia cobre exclusivamente os componentes defeituosos e não responde pelos sistemas ou partes deles mesmo se realizados com produtos SICOAIR.

A SICOMAT srl não se responsabiliza por danos causados a instalações ou outros sistemas realizados com componentes SICOAIR montados ou instalados por terceiros.